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Abstract. In this paper, we consider the problem of finding minimum common
partition of two strings (MCSP). The problem has its application in genome com-
parison. As it is an NP-hard, discrete combinatorial optimization problem, we
employ a metaheuristic technique, namely, MAX-MIN ant system to solve this.
The preliminary experimental results are found to be promising.
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1 Introduction

String comparison is one of the important problems in Computer Science with diverse
applications in different areas including genome sequencing, text processing and com-
pressions. In this paper, we address the problem of finding minimum common partition
(MCSP) of two strings. MCSP is closely related to genome arrangement which is an im-
portant field in computational biology. More detailed study of the application of MCSP
can be found at [5], [6] and [8].

In MCSP problem, we are given two related strings (X ,Y ). Two strings are related
if every letter appears the same number of times in each of them. Clearly, two strings
have a common partition if and only if they are related. So, the length of the two strings
are also the same (say, n). A partition of a string X is a sequence P = (B1,B2, · · ·,Bc)
of strings whose concatenation is equal to X , that is B1B2 · · ·Bc = X . The strings Bi are
called the blocks of P. Given a partition P of a string X and a partition Q of a string Y ,
we say that the pair π =< P,Q > is a common partition of X and Y if Q is a permuta-
tion of P. The minimum common string partition problem is to find a common partition
of X , Y with the minimum number of blocks, that is to minimize c. For example, if
(X ,Y ) = {“ababcab”,“abcabab”}, then one of the minimum common partition sets is
π ={“ab”,“abc”,“ab”} and the minimum common partition size is 3. The restricted ver-
sion of MCSP where each letter occurs at most k times in each input string, is denoted
by k-MCSP.

1.1 Related Works

In [9], the authors investigated k-MCSP along with two other variants: MCSPc, where
the alphabet size is at most c; and x-balanced MCSP, which requires that the length of
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the blocks must be witnin the range (n/d−x,n/d+x), where d is the number of blocks
in the optimal common partition and x is a constant integer. They showed that MCSPc

is NP-hard when c ≥ 2. As for k-MCSP, they presented an FPT algorithm which runs
in O∗((d!)2k) time.

Chrobak et al. [8] analyzed a natural greedy heuristic for MCSP: iteratively, at each
step, it extracts a longest common substring from the input strings. They showed that
for 2-MCSP, the approximation ratio (for the greedy heuristic) is exactly 3, for 4-MCSP,
logn and for the general MCSP, between Ω(n0.43) and O(n0.67).

In this paper, we apply an Ant Colony Optimization (ACO) algorithm to solve the
MCSP problem. We conduct experiments on both random and real data to compare
our algorithm with the state of the art algorithm in the literature and achieve promising
results.

2 Preliminaries

In this section, we present some defitnitions and notations that are used throughout the
paper. Two strings (X ,Y ), each of length n, over an alphabet ∑ are called related if every
letter appears the same number of times in each of them. A block B = ([id, i, j]), 0≤ i≤
j < n, of a string S is a data structure having three fields: id is an identifier of S and the
starting and ending positions of the block in S are represented by i and j, respectively.
Naturally, the length of a block [id, i, j] is ( j− i + 1). We use substring([id, i, j]) to
denote a substring of S induced by the block [id, i, j]. Throughout the paper we will use
0 and 1 as the identifiers of X and Y respectively. We use [] to denote the empty block.

For example, if we have two strings (X ,Y ) = {“abcdab”,“bcdaba”}, then [0,0,1] and
[0,4,5] both represent the substring “ab” of X . In other words, substring([0,0,1]) =
substring([0,4,5]) = “ab”.

Two blocks can be intersected or unioned. The intersection of two blocks is a block
that contains the common portion of the two. Formally, the intersection operation of
B1=[id, i, j] and B2=[id, i′, j′] is defined as follows:

B1∩B2 =

⎧
⎨

⎩

[] if i′ > j or i > j′
[id, i′, j] if i′ ≤ j
[id, i, j′] else

(1)

Union of two blocks is either another block or an ordered (based on the starting position)
set of blocks. Without the loss of generality we suppose that, i <= i′ for B1=[id, i, j] and
B2=[id, i′, j′]. Then, formally the union operation of B1 and B2 is defined as follows:

B1∪B2 =

⎧
⎨

⎩

[id, i, j] if j′ <= j
[id, i, j′] if j′ > j or i′ == j+ 1
{B1,B2} else

(2)

The union rule with an ordered set of blocks, Blst and a block, B′ can be defined as
follows. We have to find the position where B′ can be placed in Blst , i.e., we have
to find Bk ∈ Blst after which B′ can be placed. Then, we have to replace the ordered
subset {Bk,Bk+1} with Bk ∪B′ ∪Bk+1. As an example, suppose we have three blocks,
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namely, B1 = [0,5,7],B2 = [0,11,12] and B3 = [0,8,10]. Then B1∪B2 =B′lst = {[0,5,7],
[0,11,12]}. On the other hand, B′lst ∪B3 = [0,5,12], which is basically identical to B1∪
B2∪B3.

Two blocks B1 and B2 (in the same string or in two different strings) matches if
substring(B1) = substring(B2). If the two matched blocks are in two different strings
then the the matched substring is called a common substring of the two strings denoted
by cstring(B1,B2).

The span of a block, B = [id, i, j], denoted by, span(B) is the length of the maximum
block that contains B. More formally, span(B) = max{� | �= length(B′),B⊆ B′,∀B′}.
For example, if three blocks B1, B2 and B3 are respectively [0,0,0], [0,0,1] and [0,0,2],
then span(B1) = span(B2) = span(B3) = 2.

3 Our Approach: Max Min Ant System on the Common Substring
Graph

3.1 Formulation of Common Substring Graph

We define a common substring graph, Gcs(V,E, id(X)) of two strings (X ,Y ) as follows.
Here V is the vertex set of the graph and E is the edge set. Vertices are the positions of
string X , i.e., for each v ∈ V , v ∈ [0, |X |− 1]. Two vertices vi ≤ v j are connected with
and edge, i.e, (vi,v j) ∈ E , if the substring induced by the block [id(X),vi,v j] matches
some substring of Y . More formally, we have:

(vi,v j) ∈ E⇔ cstring([id(X),vi,v j],B
′) is not empty ∃B′ ∈ Y

In other words, each edge in the edge set corresponds to a block satisfying the above
condition. For convenience, we will denote the edges as edge blocks and use the list of
edge blocks (instead of edges) to define the edgeset E . Notably, each edge block on the
edge set of Gcs(V,E, id(X)) of string (X ,Y ) may match with more than one blocks of
Y . For each edge block B a list is maintained containing all the matched blocks of string
Y to that edge block. This list is called the matchList(B).

For example, suppose (X ,Y ) = {“abcdba”,“abcdab”}. Now consider the correspond-
ing common substring graph. Then, we have vertex set, V = {0,1,2,3,4,5} and edge
set, E = {[0,0,0],[0,0,1],[0,1,1],[0,2,2],[0,2,3],[0,3,3],[0,4,4],[0,5,5]}.The matchList
of the second edge block, i.e., matchList([0,0,1]) = {[1,0,1], [1,4,5]}.

To find a common partition of two strings (X ,Y ) we first construct the common
substring graph of (X ,Y ). Then from a vertex vi on the graph we take an edge block
[id(X),vi,v j]. Suppose Mi is the matchList of this block. We take a block B′i from Mi.
Then we advance to the next vertex that is v j + 1 MOD |X | and choose another cor-
respoding edge block as before. We continue this until we come back to the starting
vertex. Let partitionList and mappedList are two lists, each of length c, containing
the traversed edge blocks and the corresponding matched blocks. Now we have the
following lemma.

Lemma 1. partitionList is a common partition of length c if the blocks of mappedList
obeys,

Bi∩B j = [] ∀Bi,B j ∈ mappedList, i �= j (3)
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and

B1∪B2∪ · · ·∪Bc = [id(Y ),0, |Y |− 1] (4)

3.2 Heuristics

Heuristics (η) contain the problem specific information. We propose two different (types
of) heuristics for MCSP. Firstly, we propose a static heuristic that does not change dur-
ing the runs of algorithm. The other heuristic we propose is dynamic in the sense that it
changes between the runs.

The Static Heuristic for MCSP. We employ a very naive and intuitive idea. It is
obvious that the larger is the size of the blocks the smaller is the partition set. To capture
this phenomenon, we assign on each edge of the common substring graph a numerical
value that is proportional to the length of the substring corresponding to the edge block.
Formally, the static heuristic (ηs) of an edge block [id, i, j] is defined as follows:

ηs([id, i, j]) ∝ length([id, i, j]) (5)

The Dynamic Heuristic for MCSP. We observe that the static heuristic can sometimes
lead us to very bad solutions. For example if (X ,Y ) = {“bceabcd”,“abcdbec”} then
according to the static heuristic much higher value will be assigned to edge block [0,0,1]
rather than to [0,0,0]. But if we take [0,0,1], we must match it to the block [1,1,2] and
we further miss the opportunity to take [0,3,6] later. The resultant partition will be
{“bc”,“e”,“a”,“b”,“c”,“d”} but if we would take [0,0,0] at first step, then one of the
resultant partitions would be {“b”,“c”,“e”,“abcd”}. To overcome this shortcoming of
the static heuristic we define a dynamic heuristic as follows. The dynamic heuristic
(ηd) of an edge block (B = [id, i, j]) is inversely proportional to the difference between
the length of the block and the minimum span of its correspoding blocks in matchList.
More formally, ηd(B) is defined as follows:

ηd(B) ∝
1

|length(B)−minSpan(B)|+1
, (6)

where

minSpan(B) = min{span(B′) | B′ ∈ matchList(B)} (7)

In the example, minSpan([0,0,0]) is 1 as follows: matchList([0,0,0]) = {[1,1,1],
[1,4,4]}. span([1,1,1])= 4 and span([1,4,4] = 1). On the other hand, minSpan([0,0,1])
is 4. So, according to dynamic heuristic much higher numeral will be assigned to block
[0,0,0] rather than block [0,0,1].

We define the total heuristic (η) is the linear combination of the static heuristic (ηs)
and the dynamic heuristic (ηd). Formally, the total heuristic of an edge block B is,
η(B) = a ·ηs(B)+ b ·ηd(B), where a, b are any real valued constant.
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3.3 Initialization and Configuration

Given two strings (X ,Y ), we first construct the common substring graph Gcs =
(V,E, id(X)). We use the following notations. Local best solution (LLB) is the best so-
lution found in each iteration. Global best solution (LGB) is the best solution found so
far among all iterations. The pheromone of the edge block is bounded between τmax

and τmin. Like [3], we use the following values for τmax and τmin: τmax = 1
ε·cost(LGB)

,

and τmin =
τmax(1− n√pbest )

(avg−1) n√pbest
. Here, avg is the average number of choices an ant has in the

construction phase. Initially, the pheromone values of all edge blocks (substring) are
initialized to initPheromone which is a large value to favor the exploration at the first
iteration [3].

3.4 Construction of a Solution

Let, nAnts denotes the total number of ants in the colony. Each ant is deployed randomly
to a vertex vs of the Gcs. A solution for an ant starting at a vertex vs is constructed by
the following steps.

step 1: Let vi = vs. Choose an available edge block starting from vi by the discrete
probability distribution defined below. An edge block is available if its MatchList is not
empty and inclusion of it to the partitionList and mappedList obeys Equations 3. The
probability for choosing edge block [0,vi,v j] is:

p([0,vi,v j]) =
τ([0,vi,v j])

α ·η([0,vi,v j])
β

∑� τ([0,vi,v�])α ·η([0,vi,v�])β ,∀� such that [0,vi,vl ] is an available block. (8)

step 2: Suppose, [0,vi,vk] is chosen according to Equation 8 above. We choose a
match block Bm from the matchList of [0,vi,vk] and delete Bm from the matchList. We
also delete every block from every matchList of every edge block that overlaps with
Bm. Formally we delete a block B if

Bm∩B �= [] ∀Bi ∈ E,B ∈matchList(Bi)

We add [0,vi,vk] to the partitionList and Bm to the mappedList.
step 3: If (vk +1) MOD |X |= vs and the mappedList obeys 4, then we have found a

common partition of X and Y . The size of the partition is the length of the partitionList.
Otherwise, we jump to the step 1.

3.5 Pheromone Update

When each of the ants in the colony construct a solution (i.e., a common partition),
an iteration completes. We set the local best solution as the best partition that is the
minimum length partition in an iteration. The global best solution for n iterations is
defined as the minimum length common partition over first n iteration.

We define the fitness F(L) of a solution L as the reciprocal of the length of L. The
pheromone of each interval of each target string is computed according to:

τi← (1− ε) · τi+ τi · ∑
s∈Giter|ci∈s

F(s) · ε, i = 1,2, ...,n (9)
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The pheromone are bounded within the range τMIN and τMAX . We have updated the
pheromone values according to LLB or LGB.

4 Experiments

We have conducted our experiments in a computer with Intel Core 2 Quad CPU 2.33
GHz. The available RAM was 4.00 GB. The operating system was Windows 7. The
programming environment was java. The maximum allowed time for each instance was
120 minutes.

4.1 Dataset

We have taken two types of data into consideration: randomly generated DNA sequence
and real gene sequence.

Random DNA Sequence: We have generated 30 DNA sequences of length at most 600
randomly using [10]. The fraction of bases A, T , G and C is assumed to be 0.25 each. For
each DNA sequence we shuffle it to create a new DNA sequence. The shuffling is done
using the online toolbox [11]. The original random DNA sequence and its shuffled pair
constitute a single input (X ,Y ) in our experiment. This dataset is divided into 3 classes.
The first 10 have length less than or equal 200 bps (base-pairs), the next 10 have length
within [201,400] and the rest 10 have length within [401,600] bps.

Real Gene Sequence: We collected the gene sequence data from the NCBI GenBank1.
For simulation we have taken Bacterial Sequencing (part 14). We have taken the first
15 gene sequences whose lengths are within [200,600].

4.2 Parameters

The settings of parameters for which we achieved the results is described in Table 1.

Table 1. Parameters

Parameters Value
α 2.0
β 5.0

Evaporation rate, ε 0.02
nAnts |X |
pbest 0.09

initPheromone 10.0
Maximum Allowed Time 120 min

Coeff. of ηs, a 0.5
Coeff. of ηd , b 0.5

1 http://www.ncbi.nlm.nih.gov

http://www.ncbi.nlm.nih.gov
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4.3 Results and Analysis

We have compared our approach with the greedy algorithm of [8] because none of the
other algorithms in the literature are for general MCSP: each of the other approximation
algorithms put some restrictions on the parameters.

Random DNA Sequence: Table 2 presents the comparison between our approach and
the greedy approach [8] for the random DNA sequences. For a particular DNA se-
quence, the experiment was run 4 times and the average result is reported. The first
column under any group reports the partition size computed by the greedy approach,
the second column is the average partition size found by MAX-MIN and the third col-
umn represents the difference between the two approaches. A positive (negative) differ-
ence indicates that the greedy result is better (worse) than the MAX-MIN result by that
amount. From the table, we can see that out of 30 instances our approach gets better
partition size for 28 cases.

Table 2. Comparison between Greedy approach [8] and MAX-MIN on random DNA sequences

Test No. Group 1 (200 bps) Group 2 (400 bps) Group 3 (600 bps)
Greedy MAX-MIN Difference Greedy MAX-MIN Difference Greedy MAX-MIN Difference

1. 46 42.75 -3.25 119 114.25 -4.75 182 180.00 -2.00
2. 56 51.50 -4.50 122 119.00 -3.00 175 176.25 1.25
3. 62 56.75 -5.25 114 112.25 -1.75 196 188.00 -8.00
4. 46 43.00 -3.00 116 116.25 0.25 192 184.25 -7.75
5. 44 43.00 -1.00 135 132.25 -2.75 176 171.75 -4.25
6. 48 42.25 -5.75 108 105.5 -2.50 170 163.25 -6.75
7. 65 60.00 -5.00 108 99.00 -9.00 173 168.50 -4.50
8. 51 47.00 -4.00 123 118.00 -5.00 185 176.25 -8.75
9. 46 45.75 -0.25 124 119.50 -4.50 174 172.75 -1.25

10. 63 59.25 -3.75 105 101.75 -3.25 171 167.25 -3.75

Table 3. Comparison between Greedy approach [8] and MAX-MIN on real gene sequence

Test No. Greedy MAX-MIN Difference
1. 95.0000 87.7500 -7.2500
2. 161.0000 158.5000 -2.5000
3. 121.0000 116.5000 -4.5000
4. 172.0000 171.7500 -0.2500
5. 153.0000 146.0000 -7.0000
6. 140.0000 140.7500 0.7500
7. 134.0000 131.0000 -3.0000
8. 149.0000 148.5000 -0.5000
9. 151.0000 149.0000 -2.0000

10. 126.0000 124.5000 -1.5000
11. 143.0000 138.2500 -4.7500
12. 180.0000 181.0000 1.0000
13. 152.0000 147.7500 -4.2500
14. 157.0000 161.2500 4.2500
15. 157.0000 158.7500 1.7500
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Real Gene Sequence: Table 3 shows the minimum common partition size found by our
approach and the greedy approach for the real gene sequences. Out of the 15 instances
we get better results on 11 instances.

5 Conclusion

Minimum Common String Partition problem has important applications in computa-
tional biology. In this paper, we have described a metaheuristic approach to solve the
problem. We have used static and dynamic heuristic information in this approach. Simu-
lating this algorithm on long DNA sequences would be challenging future
improvement.
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